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This paper deals with the development of a space-marching method for steady incom- 
pressible flows. The method solves the continuity and the momentum equations as a coupled 
system at each streamwise station. The character of the system of equations is changed from 
elliptic to hyperbolic/parabolic in order to enable the equations to be marched in space. The 
present method has two main advantages compared to the existing parabolic or space- 
marching methods for an incompressible flow: (i) It avoids the solution of Poisson equations, 
and (ii) conserves the mass flow without employing any iterative procedure. The present 
method can capture strong secondary velocities and strong transverse pressure gradients. 
Predictions of the flow through straight and strongly curved ducts are in good agreement with 
the analytical and the experimental results. ‘i‘ 1986 Academic Press, Inc. 

In many flows of practical application, a dominant flow direction can be iden- 
tified, such as the flow through ducts and turbomachinery blade rows. These flows 
can be predicted by marching, along the dominant flow direction, an approximate 
form of the steady Navier-Stokes equations. 

The major difficulty in solving the steady Navier-Stokes equations for subsonic 
flows as a parabolic system of equations is that these equations are actually elliptic 
in nature. In subsonic flows, the terms that prevent the equations from being 
parabolic in the streamwise direction are the streamwise pressure gradient term and 
the streamwise viscous diffusion term. The latter is, in general. a small term and is 
neglected with no loss of accuracy. The streamwise pressure gradient term is very 
important, and, thus, it is always retained. Different researchers use different 
methods to treat the streamwise pressure gradient. 

Patankar and Spalding Cl] introduced a bulk streamwise pressure gradient 
correction and assumed uniform over the cross flow direction, in order to ensure 
conservation of global mass flow. To ensure local conservation of mass flow, they 
solved a pressure equation derived from the continuity equation. Briley [2] and 
Ghia, Ghia, and Studerus [3] used a similar procedure as Patankar and Spalding 
as far as the streamwise pressure gradient is concerned. Their scheme requires the 
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solution of two Poisson equations in order to ensure local mass conservation and 
to estimate the transverse pressure gradients. Many other researchers (e.g., see 
[4, 51) have developed methods similar to the above-mentioned. 

Briley and McDonald [6] follow a somewhat different approach. They split the 
velocity into four parts: (i) potential primary velocity (assumed known), (ii) poten- 
tial secondary velocity, (iii) solenoidal secondary velocity, and (iv) viscous 
streamwise velocity correction. They recast the equations of motion in order to 
obtain equations for each of the velocity parts and the pressure. Their method 
requires a priori knowledge of the potential flow. 

All these methods, classified as parabolic methods, have been used primarily for 
the prediction of flows in channels and ducts. Their major difficulty is in satisfying 
the mass conservation through the solution of some kind of Poisson equation for 
the pressure. Another shortcoming is that they solve the equations as an uncoupled 
system, and they rely on iterative procedures to couple them. The uncoupling of the 
equations is imperative because of the different types of equations employed. Most 
commonly, the equation that forces the uncoupled solution of the system of 
equations is the Poisson equation for the pressure. All of these methods are 
designed and used for subsonic flow computations. 

The solution of supersonic flows with methods that march the equations along 
the dominant flow direction is “easier” than the solution of subsonic flows. In 
supersonic flows, the Navier-Stokes equations are hyperbolic in the streamwise 
direction when the streamwise viscous diffusion terms are dropped. This is because 
the streamwise pressure gradient term does not introduce ellipticity in a supersonic 
flow. Therefore, no special treatment is required for this term. However, in super- 
sonic flows, there is usually a small subsonic region in the flow field very near the 
solid surfaces inside the boundary layer. Since the flow is subsonic in this region, 
the streamwise pressure gradient term introduces ellipticity there. This is easily 
overcome by treating the streamwise pressure gradient term in the subsonic region 
as a known source term derived from the supersonic part of the flow. 

Many parabolic methods have been developed for supersonic flows. Some of the 
references in this area are the following: Lin and Rubin [7], McDonald and Briley 
[S], Vigneron, Rakich, and Tannehill [9], Lubard and Helliwell [lo], and Schiff 
and Steger [ 111. Usually, the methods developed for supersonic flows are referred 
to as space-marching methods. This is because these methods resemble the time- 
marching methods. The space-marching methods for supersonic flows solve the 
governing equations (continuity, three-momentum, and energy) in steady form as a 
coupled system by marching in the streamwise direction. Therefore, they do not 
have any problem in conserving mass, and they do not need to employ any special 
equation for the pressure. These methods are economical, elegant, straightforward, 
and easy to comprehend, code, and debug. Only recently did Govindan [12] 
recognize the advantages of applying space-marching methods developed for super- 
sonic flows to subsonic flows. 

Govindan [12] adapted Schiff and Steger’s space-marching method to subsonic 
internal flows. The major difference between the application of this space-marching 
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method in subsonic flows and the application of the same method in supersonic 
flows is the following: in subsonic flows, the streamwise pressure gradient is treated 
everywhere as a known source term, while, in supersonic flows, the streamwise 
pressure term is treated as a known source term only in the small subsonic region 
near solid walls. 

In subsonic flows, the treatment of the streamwise pressure gradient term as a 
known source term is what changes the character of the equations from ellitic to 
parabolic, and enables the marching of the equations in space. 

Some difficulties were encountered in using Govindan’s method in incompressible 
flows, in that the method is sensitive to the specified streamwise pressure gradient. 
This motivated the authors to develop a space-marching method specifically for 
incompressible flows. The present paper deals with the development of a method for 
incompressible flows, employing ideas used in space-marching methods for super- 
sonic flows. 

PRESENT METHOD 

To illustrate the present method, the 2-dimensional non-dimensionalized incom- 
pressible equations are used. The streamwise viscous diffusion terms are neglected, 
and the equations are written in a Cartesian coordinate system (x, y) with the x 
axis aligned with the streamwise direction: 

(wq) + Wq) -’ ~2md -- 
8x ay R,Yp- (1) 

where 

A= [dip]; B=[,,l; D=[y] 

where p is the static pressure, u and v are velocity components in x and y directions 
respectively, R, is the Reynolds number, and q is the vector of unknowns, given by 

q= CP, K olT. 

As expected, the eigenvalue analysis of the system of equations (1) showed that, 
in order to be able to solve this set of equations by marching in the streamwise 
direction x, the pressure p in the streamwise flux vector A must be treated as a 
known source term. Therefore, A is replaced by A, and A,, given by 

As= [ ;]: A,= [p;s] (2) 
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where pas can be estimated from an inviscid solution of the flow field and A,, is 
treated as a source term. 

A necessary condition for marching any set of equations is that the Jacobian 
matrix of the streamwise flux vector be non-singular. Unfortunately, the Jacobian 
matrix of A,, given by 

(3) 

is singular. When using the compressible set of equations, this problem does not 
arise because of the presence of the energy equation in the set of equations. 

Therefore, at this point, the solution by marching technique seems impossible. 
This is because, if p is included in the streamwise flux vector, the set of equations is 
elliptic and cannot be space marched, and, if it is removed, the Jacobian matrix of 
the streamwise flux vector becomes singular. 

However, a careful examination of the eigenvalue of the system of Eq. (1) 
provided the clue for overcoming the above-mentioned problems. 

Before proceeding to the eigenvalue analysis, in order to keep track of the 
pressure term in the streamwise flux vector A, a coefficient c (cr = 1) multiplying p is 
introduced in vector A. Thus, vector A is now given by the expression: 

(4) 

In order to perform the eigenvalue analysis, a linearized frozen coefficient form of 
Eq. (1) is considered: 

where A,, B,, and D, are the Jacobian matrices of A, B, and D, respectively. A,, 
B,, and D, are given by the following expressions: 

A,= [I $ H]. BJ=[f i t]: DJ=[ i 8 i] (6) 

Equation (5) is rewritten as follows: 

$+(a;l~,)$=f(A;lD~)$. 
e 

(7) 
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For stable streamwise marching of Eq. (7) the eigenvalues of A; ‘B, must be real, 
and the eigenvalues of A; ‘D, must be non-negative (see [9]). The former con- 
dition is required in the inviscid region of the flow for the equations to be hyper- 
bolic, and the latter condition is required in the viscous region of the flow for 
positive viscosity to cause damping in the marching direction. 

The characteristic equation and the eigenvalues of A;‘D, are given by the 
following expressions: 

A2 l-n =o 
( 1 u 

Al.2 = 0; A32 
u’ (9) 

Therefore, A; ’ DJ has non-negative eigenvalues as long as u > 0 (i.e., non-separated 
flow). This restriction is common to all parabolic or space-marching methods. 

The characteristic equation and the eigenvalues of A;’ B, are given by the follow- 
ing expressions: 

+4. 
J;;’ 

&3= -L L-u +1J(i/&-o/u)2+4iu/&. 
(’ ) 2 & u -2 (11) 

The eigenvalues of A; ‘B, are imaginary, and, thus, Eq. (1) cannot be solved by 
space marching in the streamwise direction, 

A careful look at Eq. (11) reveals that the imaginary unit i always appears 
together with the square root of 0. If (r is taken to be equal to any negative number, 
the eigenvalues of A; l B, become real. Setting 0 = - (gl, Eqs. (10) and (11) take the 
following forms: 

or 

(12) 
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Therefore, all the eigenvalues of A; ‘B, are now real. This was achieved by setting 
o= -1~1, where D is any real number. Based on this observation, A is rewritten as 
follows: 

u 

A= u2+Ip+lolp+p . 1 (13) 
uu 

A is split into A, and A, as follows: 

A,= [u’-~~,P] ; A,= [ M;+P] . (14) 

With the expressions in Eq. (14), Eq. (1) takes the form 

&%(q) + A,(d) + -(q) 1 a’D(q) 
8X T=-2. Re ay 

(15) 

Equation (15) is, of course, identical to Eq. (1). Up to this point, we have done 
nothing more than simply adding and subtracting the term 101 p in the x-momen- 
tum equation. However, if A, is treated as a known source term and A, is con- 
sidered to be the new streamwise flux vector, Eq. (15) takes the following form: 

aA, + aB(q) 1 a2D(q) + s 
ax 7=-z ’ 

R, ay 
(16) 

where S = --aAJax. Equation (16) can be solved by space marching in the x direc- 
tion, since the Jacobian of A, is non-singular, A;‘B, has real eigenvalues, and 
A,‘D, has non-negative eigenvalues (as long as u > 0). S does not affect the 
character of the eigenvalues as long as it is evaluated from known values of p, either 
assumed or calculated at previous streamwise stations. In other words, as long as S 
does not depend on p” + ‘, it does not affect the eigenvalues; n + 1 is the station at 
which the solution is sought. The treatment of pressure terms as known source 
terms in order to change the character of the equations from elliptic to hyperbolic/ 
parabolic and enable the marching of the equations in space has been common prac- 
tice in parabolic and space-marching methods (e.g., see [l-5, 7, 9-133). 

The Numerical Algorithm 

Equation (16) is finite differenced according to the Euler implicit scheme: 

VoY’+1 - (A,)“= aB 1 d2D PI+] 
Ax -y+R,Tp I 

+s (17) 

where n + 1 is the streamwise station at which the solution is sought, and n is the 
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station at which the solution is known; Ax is the step size in the streamwise direc- 
tion. 

In the discussion that follows, S is considered to be a source term and is left 
without an index. A detailed discussion on the evaluation of S follows in a later sec- 
tion. 

Equation (17) is linearized by expanding the flux vectors in a Taylor series about 
the level n: 

(18) 

where a(. )/dq is the Jacobian of (. ), and Aq” is given by the expression: 

Aq” = q” + 1 - q”. (19) 

The use of Eq. (18) in Eq. (17) results in the following linearized equation: 

[(~)“-Ax[~((~)“,)+t~((~~.)]]dq” 
2 = -B+‘“D “+s. 

ay R, aY2 1 (20) 

The derivatives in the y direction are central-differenced. For example, 

8B Bj+,-Bj-1 
ay= DAY 

a20 Dl+1-2Dj+Dj-, 
ay2= AY’ 

(21) 

where Ay and j are the step size and index, respectively, in the y direction. 
Equation (20) can be solved efficiently at each streamwise station through the 

inversion of a block tridiagonal matrix with 3 x 3 blocks. Once Aq” is found, the 
vector of unknowns at the n + 1 station can be found through Eq. (19). 

Evaluation of S 
The source term S is made up of two terms: 

s= 

1 2 

(22) 
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Term 2 is the original pressure term that introduces the inviscid elliptic information 
to the solution. Therefore, term 2 is evaluated from an assumed inviscid pressure 
field pas 

(23) 

Term 1 should balance the other o(@/I?x) term (in the vector A,) that is treated 
implicitly and which is finite-differenced as follows: 

Therefore, term 1 must be evaluated by an expression that is as close as possible 
to Eq. (24). This expression is as follows: 

Since term 1 must be on the right-hand side, it cannot depend on p”+ ‘, and hence, 
P zs+ l is used. 

Using Eqs. (23) and (25) in Eq. (22), the following expression for S is obtained: 

s= 

However, since Eq. (25) is different from Eq. (24), an inconsistency exists in the 
x-momentum equation. In order to study this inconsistency, the x-momentum 
equation is written as follows: 

. . -I4 E), 
llllpllClt 

= -I@) 
explicit 

-g 
WPllCll 

(27) 

other terms term in terms in S 
in x momentum aA,iax 

The above equation shows that the real dp/dx is given by the following 
expression: 

8P 
ax real > 

= --)cJ, g> 
Implicit + “I g)explxit + $)explicit 

(28) 

P :e:,l-p;ea,= -lal~P”+l-P”~+l~l~P”,+‘-P”~+P”,,fl-P~, (29) 

or 
P n+l- n real - Preal - IrJl p”f’ +(ld+1)P2+-P:,. (30) 

Equation (30) shows that the scheme becomes consistent only when the flow field 
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is swept several times, and pnS is the pressure obtained from the previous sweep. 
When the solution converges, p = pas and jcr) pz,” cancels - 1~) p”+ ‘, 

In the duct flows computed in this paper, the elliptic information is given in the 
prescription of the mass flow. Hence, one sweep is adequate. But when the elliptic 
effects are large, the convergency of pressure is not assured with a multisweep. In 
such a situation, either the pressure field must be known accurately or an iterative 
Poisson solver for the pressure must be introduced to obtain the pressure field. 

The present study is concerned only with the single-sweep approach. The present 
method can be used in a single-sweep mode to predict parabolic flows in which the 
pressure gradient in the transverse plane does not depend on the streamwise direc- 
tion. In other words, for x, y Cartesian coordinates: 

When Eq. (31) holds, the inconsistency in the x-momentum equation does not 
affect the solution of the velocity field and the values of i3p/ay. However, after the 
solution is completed, the pressure must be corrected through Eq. (30). 

As will be seen later, the method gives good predictions even when Eq. (31) is 
not strictly valid. In other words, the method can be used in flows in which the 
transverse pressure gradient is a mild function of the streamwise direction. 

Before closing this section, it must be mentioned that the present method is free 
from stability limitations associated with the minimum value of Ax. This limitation 
associated with many space-marching methods is absent in the present method 
because of the careful treatment of the eigenvalues. This has been confirmed 
through numerical experimentation. In one of these experients, the flow through a 
channel was calculated with 10,000 grid points in the streamwise direction per 
channel width. No instability was observed. 

Another problem that should be addressed here is the choice of a value for 0. The 
value of (T should not be very small, since as (T tends to zero, the Jacobian matrix of 
the streamwise flux vector tends to become singular. It was found through 
numerical experimentation that the value of D should lie between 0.05 and 0.005. 
The value (T = 0.01 was used in all the computations presented in this paper. 

EXTENSION TO ~-DIMENSIONAL FLOWS 

The extension of the method to three dimensions is straightforward. The 
z-momentum equation is added to the set of equations, and Eq. (16) takes the 
following form: 

d2&7) 
a2 1 + s 

(32) 

where q is given by q = [p, U, v, w], w is the velocity component in z direction. 
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The eigenvalues of A,‘D, and A,’ E, are as follows: 

Al,2 = 0; I,,, = l/u. 

The eigenvalues of A,‘B, are as follows: 

(33) 

(34) 

And the eigenvalues of A,‘C, are as follows: 

(35) 

As with the 2-dimensional equations, Eq. (32) can be space marched in the 
streamwise direction x, as long as u > 0. 

Transformed Equations 

The boundary conditions are most easily and accurately implemented when the 
boundaries of the flow domain are constant-coordinate surfaces. Therefore, a body- 
&ted coordinate system is used in the physical domain. A transformation is used 
that maps the body-fitted grid in transforming the physical domain to a square grid 
in the computational domain (a cube). The transformation that connects the two 
domains can be written in the following form: 

4 = 4(x, Y, z) 

YI = 9(x, YT 2) (36) 

i = 5(x, Y, 2) 

where 5 is the coordinate in the predominant flow direction, and ‘1 and < are the 
coordinates in the transverse plane. 

The equations in the physical domain are the steady non-dimensionalized 
Navier-Stokes equations for incompressible flow, given by 

aA + aB(q) + Wq) 1 - - -=- 
ax ay aZ R, 

where 

A= 
u*+p 

uv 

UW 

(37) 
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F= 

0 

4 

au au 
w z+sj ( 1 

aw au 
u z+z ( ) 

1 D= 

0 

au a0 
p s+ax ( 1 

2j.l !!f 
( ) ay 

aw a0 
p 5+zG ( 1 

1 E= 

0 

au aw 
p aZ+ax ( ) 

au aw 
p i%+3j ( ) 

dg 
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In the above equation, the molecular viscosity p has been kept inside the derivative 
sign in order to be able to use the formulation in both the laminar and the tur- 
bulent flows. The molecular viscosity is replaced by the sum of the molecular and 
the eddy viscosity when the flow is turbulent. 

The transformed equations in the computational domain can be cast in many dif- 
ferent forms. Shamroth and Gibeling [14] have performed a detailed study of the 
different forms of the transformed equations. They found that the commonly used 
divergence form, in which all the fluxes and the metric coefficients are under 
derivative signs, introduces large truncation errors. This is because some flow 
variables (e.g., p) in some regions of the flow change from grid point to grid point 
in the fourth significant figure, whereas metric coefficients change in the second 
significant figure. As a result, flow variable changes are commensurate with the 
metric coefficient truncation error. 

Shamroth and Gibeling suggested that a form in which the metric coefficients are 
kept outside of the derivative signs and the fluxes are kept inside gave the best 
results. Therefore, in the present study, Shamroth and Gibeling’s suggestion is 
followed. According to the above discussion, Eq. (37) is written in the transformed 
coordinates in the following form: 

(38) 

In the above expression, 5,, tY, <,, qX, qy, q2, i,, iY, i, are the metric coefficients. 
The Vectors F, D, E are the transformed p, b, & vectors, respectively. 

In order to be able to solve Eq. (38) by space marching in the 5 direction, the 
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viscous diffusion terms in this direction are dropped, and the flux vectors A, B, and 
C under a 5 derivative are split as follows: 

With these modifications, Eq. (38) takes the following form: 

i 

0 

0 

0 

lalp+p 

(40) 

The vectors F, 6, and ,!? are derived by dropping the terms involving a/at in F, D, 
and E, respectively. 

The Numerical Algorithm for the 30 Transformed Equation 

The numerical algorithm used in this study is based on Beam and Warming’s - - 
[ 151 and Briley and McDonald’s [163 implicit factored schemes. The vectors F, D, 
E, are split as follows: 

F=F,+F, 

D=B,+D, (41) 

E=E, +E,. 

F, , D1, and E, contain the terms under an 4 derivative, and F2;, D2, and E,, con- 
tain the terms under a i derivative. 
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For convenience, in presenting the numerical algorithm, the following definitions 
are introduced: 

- - - 

1 
(42) 

aA, as, ac, s= -r.,ag-t-‘p’~. 

L, contains all the terms that involve only q derivatives; L, contains all the terms 
that involve only { derivatives; L,, contains all the terms that involve mixed 
derivatives; and S contains the streamwise pressure gradient terms that are treated 
as known source terms, as discussed earlier. 

Using Eq. (42) in Eq. (40) the following expression is obtained: 

(43 1 

A fully implicit (Euler implicit scheme) finite difference equivalent to Eq. (43) can 
be written in the following form: 

L(A:+ ’ -A::)+5,(B::+‘-B::)+~;(C::+‘-C::)=d5(L,+L,+L,,+S)“+‘. (44) 

In the above expression, d5 is the streamwise step size; n is the index in the 
streamwise direction; (n + 1) is the streamwise location at which the solution is 
sought; and the solution is known at (n). 

Equation (44) is still non-linear and not in a form suitable for efficient numerical 
computation. The non-linear flux vectors at the level (n + 1) can be linearized by 
expanding them in a Taylor series about the level n: 

(45) 

The vector L,* is going to be treated explicitly. This is because the mixed 
derivative terms cannot be separated into individual operators for the two-coor- 



402 POUAGARE AND LAKSHMINARAYANA 

dinate directions in the cross flow, and, therefore, they are treated explicitly. As has 
been shown by Beam and Warming [17], treating the mixed derivative terms 
explicitly does not deteriorate the stability of the scheme. Therefore, Liz is 
linearized as follows: 

L”+I=L” 
I2 12’ 

The vector S is being treated explicitly in a direct extension of Eq. (26): 

(46) 

The use of Eqs. (45), (46), and (47) in Eq. (1 
equation: 

! 1 E -* 
1) gives the following linearized 

[r,(~)+i’,(~)+e,(~)jAq” 

=AS[L, +L2+L,*-Jn+Sn+‘+A5 &$+ (2)“j Aq”. (48) 

The rearrangement of Eq. (48) gives the following expression: 

[L(~)+q$j.,(~)-,:[(~)+(~)jjAq~ 

=A<(L, +L*+L,2)n+Sn+‘. (49) 

Equation (49) can be written in a compact form by naming the right-hand side of it 
R, and setting 

With the above definitions, Eq. (49) takes the following form: 

(W+Ql+Q2)Aq”=R. 

(50) 

(51) 
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Using Douglas and Gunn’s [18] split schemes, the above equation is factored as 
follows: 

(W+Ql,Aq*=R 

(W+ Q2) Aq”= WAq*. 
(52) 

Equation (52) represents a two-step factorized scheme that is fully implicit and 
unconditionally stable. The stability analysis of the scheme has been discussed by 
Warming and Beam [ 191 and Briley and McDonald [ 161. Each of the steps in Eq. 
(52) involves the inversion of a block (4 x 4) tridiagonal matrix. 

The Boundary Conditions 

The discretization of the governing equations, at any one of the half-steps in the 
factored algorithm, produces a block tridiagonal system of equations that can be 
written in the following form: 

L, Aq,- 1 + Di Aqi + Ui Aqi+ I= Ri (53) 

where L, D, and U are the lower diagonal, and upper diagonal block coefficient 
matrices and R the right-hand side vector; i is the index in the direction normal to 
the boundary. At the first grid point away from the boundary (say, the left boun- 
dary), Eq. (53) is written as follows: 

L,Aqb+D,Aq,+ZJ,Aq,=R,. (54) 

The subscript b refers to the values on the boundary. The change in the vector of 
unknowns Aq, on the boundary must be eliminated from the system of equations. 
This is done through the application of implicit boundary conditions. Aq, can be 
related to Aq at the interior points or simply Aq, may be known. In the case that it 
is not known, it is calculated from the evaluated Aq at the interior points. This is 
done through the application of the explicit boundary conditions. As will be shown 
later, sometimes it is necessary to employ different boundary conditions on the 
implicit and the explicit sides. 

In a space-marching method, there is no need to specify downstream boundary 
conditions. Also, the upstream boundary conditions, referred to as initial conditions 
in the present study, are always specified. Therefore, only the boundary conditions 
on the remaining four sides of the domain are considered. 

Many different types of boundaries can be found in fluid flows. Here, only two 
kinds of boundaries will be considered: (i) solid wall, and (ii) the boundary on 
which the solution is known. 

Boundary Conditions on Solid Walls 

In a flow over a solid wall, the no-slip condition for the velocities is used for both 
the implicit and the explicit side of the equations. The boundary condition on the 
pressure is dp/& = 0, where n is the direction normal to the wall. This condition is 
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enforced both on the implicit and the explicit side of the equations. It should be 
noted here that it is very important to enforce the normal boundary condition on 
the pressure (@/an = 0) implicitly. Also, the way it is implemented is very impor- 
tant. This is because this boundary condition is the only link between the pressure 
at the odd and even points. It is well known that, when a central difference scheme 
is used (as in the present method in the transverse plane), the pressures at the odd 
and even points tend to uncouple in the transverse plane and produce saw-like 
pressure solutions which generate saw-like secondary velocities; eventually, the 
computation becomes unstable. However, through the use of @/an =O, it is 
possible to couple the grid point on the wall (an even point) with the first grid 
point away from the wall (an odd point). If this is done implicitly, it is possible to 
avoid the uncoupling of the pressure at the odd and the even points. 

The question that should be answered now is what kind of difference must be 
used to approximate ap/dn = 0. An obvious choice is to use a second-order accurate 
forward-differencing: 

ap 
-6;;,= 

-3P,+4P,-P,=o 
2An 

(55) 

where the subscript b indicates the values on the boundary: (1) the values at the 
first grid point away from the wall; and (2) the values at the second point away 
from the wall. However, in many cases, Eq. (55) did not prevent the pressure 
solution from uncoupling. 

Another way of differencing ap/dn is by using a first-order accurate forward 
expression: 

aP -Pb+?+ 

%,= An 
(56) 

Equation (56), even though less accurate than Eq. (55) always provided better 
coupling of the pressure at the odd and even points. The explanation for this is sim- 
ple. When Eq. (56) is used, the value of p at the boundary point (an even point) is 
determined exclusively by the value of p at the first grid point away from the wall 
(an odd point). However, when Eq. (55) is used, the value of p at the boundary is 
also influenced by the value of p at the second grid point away from the wall, which 
is also an even point, and, thus, the coupling of odd and even points is reduced. 

Boundary Conditions for Boundaries on Which the Solution is Known 

At first thought, it seems that there should be no problem in applying boundary 
conditions on boundaries on which the solution is known. This is true as far as the 
velocities are concerned. However, this is not true for the pressure. If the known 
pressure on the boundary is used both on the implicit and the explicit side of the 
equations, the solution for the pressure at the odd and even points quickly 
uncouples. To avoid the problem, the normal boundary condition for the pressure 
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aplan =0 is used on the implicit side of the equations. On the explicit side, the 
correct value of p is used on the boundary. 

The known values of the velocities are used both on the implicit and the explicit 
sides of the equations. 

METHOD AND CODE VERIFICATION 

In order to check the method and the computer code written to implement it, 
several test cases were computed, and the results were compared with the available 
exact solutions and the experimental data. Since the primary objective for running 
these cases was to check the technique, the flows were chosen to be laminar in 
order to avoid any inaccuracies arising from the turbulence model. Also, the 
geometry was chosen to be simple in order to avoid any problems arising from the 
grid. 

Developing Laminar Flow in a 20 Channel 

One of the test cases computed was the developing laminar flow in a 2-dimen- 
sional channel. Even though this test case is a simple one, it will show some of the 
important features of the method. It will indicate whether or not the method con- 

FIG. 1. Fully developed laminar flow through a 2D channel. 
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FIG. 2. Centerline velocity of the laminar flow through a 2D channel 

serves the mass, and also how the method reacts to the assumed streamwise 
pressure gradient. 

A Cartesian grid was used in the physical domain, with constant spacing in both 
the axial and the transverse directions. Twenty-one points were used in the trans- 
verse direction, and 20 points per width in the streamwise direction. The Reynolds 
number, based on the width of the domain, was chosen to be equal to 500. At the 
entrance of the channel, a uniform flow was specified as the initial velocity profile 
(ur = 1). The transverse velocity and the pressure were set equal to zero at the 
initial station. 

The predicted, fully developed streamwise velocity profile is compared with the 
analytical solution (parabolic profile) in Fig. 1. The agreement between the two is 

20) 
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-I 75- 
1,‘(“““(““““‘/““““‘1”““,” 
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x 

FIG. 3. Centerline pressure of the laminar flow through a 2D channel. 
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excellent. This demonstrates the ability of the method to conserve the mass flow. 
Note that this was achieved with no extra computation. In all other subsonic space- 
marching or parabolic methods, some kind of adjustment is needed after each step 
to ensure mass conservation. 

In order to check whether the method accurately predicts the developing part of 
the flow, the centerline streamwise velocity U, is plotted in Fig. 2 vs the scaled 
streamwise distance Z, where 8= (x/D)/R,,; D is the width of the channel; and 
R,, = (ui D)/v. In the same figure, the analytical results of Schlichting [20] are also 
plotted. The agreement between the two is very good. 

The predicted centerline pressure versus the scaled streamwise distance is com- 
pared with that from the analytical solution of Schlichting in Fig. 3. In this figure 
P, is the inlet pressure, P, is the pressure along the centerline. Again the agreement 
between the two is very good. This shows that the present method can predict the 
streamwise pressure gradient accurately (at least for simple parabolic flows). 

This, however, sounds surprising since the incompressible fluid flow is an elliptic 
phenomenon. Therefore, there is no way to predict the pressure and velocity fields 
accurately by just sweeping the flow field once without any “elliptic information” 
transmitted upstream through multiple sweeps of the flow field. This argument is 
correct. The only reason that the method gives an accurate prediction of the flow 
field in a single sweep is that “elliptic information” is indeed given to the set of 
equations. This “elliptic information” is coming through the initial velocity profile. i , /’ 

‘I:-_; D 

D 

FIG. 4. Fully developed laminar flow through a square, straight duct. 
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FIG. 5. Centerline velocity of the laminar flow through a square, straight duct 

When the initial velocity profile is specified at the initial plane, the total mass flow 
through the channel is specified. This specified total mass flow contains all the 
necessary “elliptic information” that a method needs for the accurate prediction of 
the flow field through a constant area channel. In the next sections, it will be shown 
that this is also true for 3-dimensional ducts with constant area and curvature. 

Developing Laminar Flow in a Square, Straight Duct 

This flow is similar to the 2-dimensional channel flow studied in the previous sec- 
tion, but with the added complication that the flow is developing in a 3-dimensional 
geometry. 
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FIG. 6. Centerline pressure of the laminar tlow through a square, straight duct 
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A Cartesian grid was used in the physical domain with constant spacing in all 
three directions. Twenty-one points were used in each of the transverse directions, 
and 20 points per width in the streamwise direction. The Reynolds number, based 
on the width of the duct, was chosen to be equal to 500. At the entrance of the duct, 
a uniform flow was specified as the initial velocity profile (u, = 1). The transverse 
velocities and the pressures were set equal to zero at the initial station. 

The predicted, fully developed streamwise velocity profiles at y/D = 0.1, 0.3, and 
0.5 are compared with the analytical solution (see White [21] ) in Fig. 4. The 
agreement between them is very good. 

The predicted centerline velocity is compared with the analytical results of Han 
[22], and with the experimental data of Goldstein and Kreid [23] in Fig. 5. The 
agreement between them is likewise very good. 

The predicted centerline pressure is compared with the analytical solution of Han 
in Fig. 6. Again, the agreement between them is very good. 

Note that the present method captures the effects of the entrance region of the 
duct accurately. The rapid acceleration of the core flow in the entrance region of the 
duct results in a sharp drop of the pressure. The acceleration of the flow and the 
pressure drop decreases as the flow develops downstream. The pressure drop 
becomes eventually linear in the fully developed region. All of these features are 
accurately predicted. 

As with the flow through the 2-dimensional channel, the solution through the 
square duct was obtained in a single sweep. The solution was started with pas = 0. 

In both the 2-dimensional channel case and the straight square duct case, the 
transverse pressure gradient does change with the streamwise direction in the 
entrance region. However, the method was able to give excellent predictions since 
the magnitude of the transverse pressure gradient is small. 

Developing Laminar Flow in a Square, Curved Duct 

The laminar flow through a mildly curved square duct was first computed. The 
ratio of the radius of curvature to the width of that duct was 14.5 (R,./D = 14.5). 

FIG. 7. Geometry of a square, curved duct. 
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The prediction of the present method agreed very well with Ghia and Sokhey’s 
[24] numerical results for the same duct. However, the strength and the limitations 
of a space-marching (or parabolic) method become apparent only when it is used 
to predict flows through strongly curved ducts. 

Taylor, Whitelaw, and Yianneskis [25] measured the laminar (R,, = 790) flow 
through a strongly curved duct with constant area. The ratio of the radius of cur- 
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FIG. 8-Continued. 

vature to the width of the duct was 2.3 (RJD = 2.3). The turning of the duct was 
90” (see Fig. 7). The curvature of the duct was zero upstream of the location with 
#=O”, and downstream of the location with 4 =90”. At the inlet of the bend 
(4 = O’), the flow was partly developed, with the boundary layer thickness being 
approximately 25 % of the duct width. In this duct, very strong secondary velocities 
were generated, reaching 60% of the bulk velocity. 

The computation for this duct was started at 4 =O” (or t/D =O). The velocity 
profile at the inlet plane was obtained from the available experimental data through 
interpolation. The assumed pressure was approximated at the horizontal centerline 
A-A (Fig. 7) through the simple radial equilibrium equation, and it was assumed 
constant in the spanwise and streamwise directions. 

The computation was carried out only in the lower half of the duct (from c/D = 0 
to c/0=0.5), since the flow is symmetric about the horizontal centerline A-A. 
Forty-one grid points were used in the q-direction; 21 grid points, in the c-direction; 
and 180 streamwise stations, between 4 = 0” and 4 = 90”. The computed streamwise 
velocity U, normalized by the bulk velocity us, is compared to the measured 
velocity u at three streamwise locations (d = 30”, 60”, 77.5”) in Figs. 8a, b, and c. 
Each figure shows the velocity profiles at live different locations (q/D = 0.1, 0.3, 0.5, 
0.7, 0.9) plotted against the spanwise direction [. The u component of velocity is 
along the 5 coordinate (see Fig. 7). The agreement between predictions and 
measurements is good at most locations. Note that the method captures the large 
distortions of the streamwise velocity (e.g., see the profile at 4 = 77.5”, q/D = 0.3 in 
Fig. 8~). This distortion is due to the large secondary velocities that develop in the 
transverse plane. 



412 POUAGARE AND LAKSHMINARAYANA 

The computed secondary velocity v, normalized by the bulk velocity uB, is com- 
pared to the measured velocity v in Figs. 9a, b, and c. The v component of velocity 
is along the q coordinate (see Fig. 7). The agreement between predictions and 
measurements is good at most locations. The method captures the peak value of v 
( =O.~U,) and all the qualitative features of the flow (e.g., see 
q/D = 0.1 in Fig. 9b). The secondary velocity vectors ( lQSl = 
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plane at C$ = 30”, 60”, and 77.5” are shown in Figs. lOa, b, and c, respectively. It can 
be seen that, while going from 4 = 30” to 4 = 77.5”, the vortex becomes stronger 
and moves towards the inner wall and the horizontal centerline A-A. 

As with the previous cases, the solution through square curved ducts was 
obtained in a single sweep. In this test case, the transverse pressure gradient is 
strong, but it is not changing rapidly in the streamwise direction. This test case 
showed that this technique is adequate for flows with strong transverse pressure 
gradients which are weakly dependent on the streamwise direction. 

CONCLUDING REMARKS 

A space-marching method for steady incompressible flow has been developed 
that can accurately predict both the velocity and the pressure field in parabolic 
flows such as the flows through straight and curved ducts with constant area and 
curvature. The method can capture strong secondary flows, and the streamwise and 
the transverse pressure gradients. It should be mentioned here that all the results 
were obtained without any artificial damping (or dissipation), even though the 
method employs a central difference scheme in the transverse plane. This shows the 
effectiveness of the normal boundary condition on the pressure ($J/c% =0) in 
coupling the odd and even points. The method has no problem in conserving the 
global or local mass flow. 

Even though the method is single-pass and non-iterative, it was able to predict 
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parabolic flows, like the flows through ducts, without the help of an assumed 
pressure field. The only information needed by the method is the geometry of the 
flow domain and the inlet velocity profile. The latter contains the necessary “elliptic 
information,” as explained earlier. 

The reader must be warned that, for more complex flow fields where the elliptic 
effects are significant, accurate prescription of the pressure field or an iterative 
solver for the pressure field is essential. Also, the method, as it stands now, cannot 
be applied to external flows, where the mass flow constraint is absent. 
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